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ABSTRACT 

This document reports research into the modelling and 
control of an advanced Angular Momentum Control Device (AMCD), 
used to control the attitude of spacecraft. These systems 
consist of a angular momentum storage flywheel supported in 
magnetic bearings. The specific AMCD analyzed is an AMCD Combined 
Control Energy Storage System (ACCESS). This system presents a 
challenging control problem because the system dynamics are a 
strong function of rotaional speed and the open-loop system 
becomes unstable at high rotational speeds. These open-loop 
instabilities place minimum and maximum bandwidth and gain 
requirements on stabilizing controllers. 

The stability properties of the closed-loop system are one 
of the major results of this study. The closed-loop stability 
properties were analyzed using recently developed control 
analysis tools for systems described by complex coefficient 
differential equations. In addition to measures of stability and 
stability robustness, the research also explicitly determined the 
stability robustness to variation in plant speed and variation in 
plant parameters. 

Various feedback controllers are investigated including 
variable-gain, full-state feedback controllers based on 
linear-quadratic regulators (LQR) ; f ixed-gain, full-state 
feedback LQRs; output-feedback, model-based-compensators (MBC) 
designed using fixed-gain Kalman filters as state estimators in 
conjunction with fixed-gain LQRs; and simple output-feedback, 
lead-lag compensators. For both the translational and angular 
dynamics, simple lead-lag compensators acting on parallel 
measurements provide good stability and stability robustness over 
a wide speed range. 
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1 . 0 INTRODUCTION 

This document reports research into the modelling and 
control of an advanced Annular Momentum Control Device (AMCD), 
used to control the attitude of spacecraft. These systems 
consist of a angular momentum storage flywheel supported in 
magnetic bearings. This research was performed by SatCon 
Technology Corporation under subcontract to the Charles Stark 
Draper Laboratory (CSDL) in support of a specific AMCD, the AMCD 
Combined Control Energy Storage System (ACCESS) developed at 
CSDL. SatCon Technology Corporation was tasked to develop a 
dynamic model and stabilizing controller for the system. 

The first chapter of this report provides background and 
introductory material. The next section, Section 1.1, provides 
background material for the combined energy storage and attitude 
control systems and the angular momentum control device. Section 
1.2 introduces the specific system analyzed in this report, the 
AMCD Combined Control Energy Storage (ACCESS) System. Section 
1.3 discusses the background in flexible rotor control that is 
applicable to the ACCESS system. Section 1.4 then discusses the 
specific problems that are addressed in this research. 

Chapter 2 contains a brief discussion of the important 
subcomponents in the ACCESS system; the motor generator, the 
flywheel and spokes, and the large angle magnetic suspension. 
Chapter 3 combines these subcomponent models into a system 
model. The dynamics of the ACCESS system will be shown, under 
suitable assumptions, to decouple into separate translational 
(radial) and angular (tilt) models. The open-loop 
characteristics of the ACCESS model are then presented including 
the important open-loop instabilities that result from operation 
at speeds greater than the flexible mode frequencies of the 
suspended rotor. 

Based on this system model, the controller requirements are 
presented in Chapter 4 along with the form of the linear, 
feedback controllers that are investigated. Chapter 5 presents 
some representative examples of these controllers for both the 
translational and angular models. Finally, Chapter 6 presents 
conclusions and recommendations for further work. 

1.1 Background 

The use of flywheels as attitude control actuators for 
orbiting spacecraft began in the early days of the space program 
[Roberson 19581 and has steadily progressed to a state of 
relative maturity [Weinberg 1982; Wertz 19781. Reaction wheels, 
momentum wheels, and control moment gyros are the current 
approaches by which torques are applied to satellites. All of 
these devices effect attitude control by exchanging angular 
momentum between a flywheel and the spacecraft. Reaction and 
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momentum wheels contain variable-speed flywheel rotors with a 
fixed orientation relative to the spacecraft. Reaction wheels 
are designed to spin in either direction and are nominally 
non-spinning. Momentum wheels spin in only one direction about a 
nominal bias speed. A control moment gyro (CMG) contains a 
constant-speed flywheel with either a single- or a 
two-degree-of-freedom gimbal system. Angular momentum is 
exchanged between a CMG and a spacecraft through the variation of 
the relative orientation of the flywheel [Kennel 1970; Wertz 
19781. 

The primary cause of torque jitter in these devices is the 
mechanical bearings that are unable to precisely maintain the 
orientation of the angular momentum of the flywheel with respect 
to the satellite. This problem is typically solved by demanding 
extremely close manufacturing tolerances in the mechanical 
bearings [Wienberg 19821. 

A magnetic bearing allows the angular momentum of a flywheel 
and its related dynamics to be controlled in a spacecraft 
environment. The earliest attempt at utilizing a magnetically 
suspended flywheel as an attitude control actuator was made at 
NASA/LaRC with the construction of an Annular Momentum Control 
Device (AMCD) that consists of a magnetically suspended 
graphite/epoxy hoop designed to be used as a momentum wheel 
[Anderson 1975; Groom 19781. There has also been a great deal of 
research performed by Sperry Flight Systems [Sabnis 1975; 1976; 
Stocking 19841, the European Space Agency [Robinson 19841, and 
the Japanese National Aerospace Laboratory [Murakami 19821 aimed 
at developing magnetically suspended angular momentum exchange 
effectors. 

The first study of a combined attitude control and energy 
storage system using flywheels was performed by Rockwell 
International for NASA in 1974 [Notti 19741. This system, call 
an Integrated Power and Attitude Control System (IPACS) , 
contained high-speed ball bearings and a permanent magnet 
motor/generator supporting and driving a titanium rotor. The 
study identified magnetic suspensions, composite rotors, and 
high-efficiency motor/generators as subsystems important for 
improved performance [Anderson 1973; Keckler 1974; Notti 19741. 

These combined energy storage and attitude control systems 
have been investigated at CSDL since 1981 [Eisenhaure 1984a; 
1984b], growing out of earlier work in magnetic bearings for 
terrestrial energy storage flywheels begun in 1975 [Eisenhaure 
19771. The first concept consisted of a pair of magnetically 
suspended, counter-rotating flywheels mounted along the roll axis 
of a small satellite. This system can provide adequate control 
torques when the energy and angular momentum wheels are gimballed 
through only small angles (< 0.70) [Eisenhaure 1984al. 
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1.2 AMCD Combined Control Energy Storage System (ACCESS) 

An advanced ACCESS effector evolved out of a study that 
considered the ACCESS concept for use in Space Station. This 
joint CSDL and Rockwell International study resulted in the 
design of an Attitude Control and Energy Storage System (ACESS) 
based on an advanced ACCESS effector [Oglevie 19851. A unique 
feature of this advanced ACCESS design is the large-angle 
magnetic suspension (LAMS). This suspension allows limited 
gimballing freedom of approximately five degrees. This magnetic 
gimballing eliminates the need for mechanical gimbals. 

A scale model of the advanced ACCESS module is being 
developed at CSDL to prove concept viability. This laboratory 
module is an approximately 1/20th scale model of an Space Station 
ACCESS module. The size of a full-scale module and scaling 
decisions can be found in [O'Dea 19851. The laboratory module 
shown in figure 1 consists of a central, electromechanical hub 
connected to the flywheel by a spoke structure. The 
electromechanical hub contains the large-angle magnetic 
suspension, motor/generator, and sensors. The electromechanical 
hub also contains touchdown bearings in case of magnetic bearing 
failure. An auxillary lifting electromagnet is shown at the top 
of the figure. This magnet is needed to unload the weight of the 
suspended flywheel system from the large-angle magnetic 
suspension, which is not designed for earth gravity environment. 
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Figure 1. Laboratory-model AMCD Combined Control Energy Storage 
System (ACCESS) 
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The following paragraphs provide a brief description of the 
important ACCESS subsystems. The design size and capabilities of 
the laboratory module are given in Table I. The paper by O’Dea 
[1985] provides a more detailed overview of the system while 
Chapter 2 of this report provides more detailed descriptions of 
the designs of each subsystem. 

Table I. CHARACTERISTICS OF THE LABORATORY ACCESS MODULE 

Flywheel Mass (kg) 18 

Flywheel Angular Momentum (kN-m-s) 2.2 

Maximum Gimbal Angle (degrees) + 5  

Power (kW) 1 

Maximum Control Torque (N-m) 5 

Maximum Rotational Speed (rad/sec) 1690 

The large-angle magnetic suspension chosen for the 
laboratory ACCESS module is a Lorentz-force, spherical air-gap 
bearing. The bearing uses Series 2-17 rare-earth-cobalt 
permanent magnets with a 22MGoe maximum energy product to produce 
a spherically radial magnetic field in the spherical air gap. 
The spherical configuration allows limited gimballing freedom in 
the bearing. The eight stator coils mounted in the spherical 
air-gap are capable of providing translational and axial forces 
and radial torques by appropriate excitation of the coils. This 
type of Lorentz-force bearing has the advantages of linearity, 
high bandwidth, and negligible coupling between bearing force and 
mot ion. 

The motor/generator transfers power bidirectionally between 
the flywheel and electrical power bus. The motor/generator must 
have high efficiency in both motor and generator modes. Other 
requirements include low side loading on the magnetic suspension 
and gimballing capability. A variety of machine types were 
investigated from which a permanent magnet, ironless 
stator/rotating backiron machine was chosen. This design gives 
high efficiency and low side loads. The machine also features a 
spherical air-gap to allow limited gimballing. 

The ACESS study concluded that a thin-wall annular flywheel 
made of Boron/epoxy was the most suitable for the advanced ACCESS 
module. For a composite flywheel, the method of torque transfer 
and support between the flywheel and hub is a critical area of 
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design. This spoke system must accommodate the high radial 
growth that will be seen with a composite flywheel. Because of 
time and cost constraints, the laboratory ACCESS flywheel is 
constructed of AIS1 4340 steel rather than Boron/epoxy. The 
spoke system, however, was designed to meet the flexibility 
requirements imposed by a composite flywheel. 

Due to the flexibility requirements of the spoke structure 
and the high rotational speed of the flywheel, the ACCESS system 
is required to run at a rotational speeds higher than the first 
natural frequency of the freely suspended rotor. SatCon 
Technology Corporation was tasked to understand the controller 
design issues and requirements posed by this super-flexible 
operation. The focus of this research is to address the control 
problems associated with the flexible nature of the ACCESS rotor 
system and not to address directly the control issues associated 
with using the ACCESS modules to control energy storage and 
attitude of a spacecraft. 

Before beginning a more detailed discussion of the modelling 
and control of the ACCESS system in Chapter 2, the next section 
briefly reviews previous research into active control of magnetic 
bearing systems. 

1.3 Magnetic Bearing Control: State-of-the-Art 

Magnetic bearings are a technology still undergoing rapid 
development. Products that include magnetic bearings are now 
available, however, and some types of magnetic bearings have 
become relatively common. Mature magnetic bearing technology is 
exemplified by systems comprised of biased ferromagnetic, 
attractive bearings with inductive position sensors feeding 
single-loop designed controllers. The bearings maybe permanent 
magnet biased or electromagnet biased. The controllers are 
usually implemented with analog electronics. The rotating 
structure is modelled as a rigid body and the magnetic bearings 
are made to behave dynamically as conventional spring/damper 
bearings by the use of lllocallt feedback. 

During the last ten years a handful of researchers have 
begun investigating the use of magnetic bearings to support and 
control flexible rotors, which are rotors running at rotational 
speeds higher than their lowest frequency of free vibration. 
Schweitzer was the first to publish research about the active 
control of flexible rotors [Schweitzer 19741. The system he 
investigated consisted of a three rotor masses connected by well 
damped, flexible segments. The multi-mass rotor was supported by 
conventional bearings with an actively controlled magnetic 
bearing added for use as an active damper. This early work used 
state-space methods to place closed loop system poles. Another 
thrust of their research was optimal placement of the sensors and 
active damper using generalized stabilizability and observability 
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criteria over the modes for which active control is desired. 
Using the active damper, Schweitzer, et. al. were able to 
approximately double the range of stable operation, where the 
destabilizing mechanism was the rotor internal damping. They 
also showed improved synchronous response to mass unbalance with 
the active damper. 

In later work they found that non-colocation of the sensors 
and actuator as placed by optimal stabilizability and 
observability criteria can lead to spillover effects, including 
instability [Salm 19841. They designed reduced order controllers 
to that provided robust, stable control when combined with 
collocated sensor/actuators. The design of these integrated 
sensor/actuator sub-systems is discussed in [Ulbrich 19841. The 
development of integrated sensor/actuators has led to interest in 
localized control of the actuator based only on information 
available from the integrated (collocated) sensor. This 
decentralized control problem is addressed by [Bleuler 19841 for 
rigid-body rotors. His thesis also reports the use of a 
scheduled gain controller with two gains schedules, one used at 
low speeds and the other at high speeds. These scheduled gain 
controllers are needed because of the variation in plant dynamics 
caused by the gyroscopic effects that vary with rotational speed. 

Linear-quadratic design methods were used in a study by 
[Hubbard 19801 and [McDonald 19851. They considered a 
pendulously supported flywheel system where the magnetic bearing 
was assumed to apply both forces and torques. Their model 
included the effect of quill-shaft flexibility, but neglected 
shaft damping. 

The works mentioned above used numerical techniques to 
design specific controllers while [Johnson 1985a; 1985bl examined 
the range of behavior that is possible given a specific 
controller structure. His work analytically examined the lateral 
dynamics of a flexible rotor supported by active bearings. The 
rotor system consisted of a single mass rotor with mass unbalance 
mounted on a symmetrical shaft (Jeffcott rotor) with internal 
damping. The active bearings were assumed to be ideal actuators 
driven by fixed-gain or variable-gain, linear controllers. 
Measurements of the position and velocity of the shaft-rotor at 
the rotor and at the shaft ends (bearings) were the controller 
inputs. The goal was a qualitative and quantitative 
understanding of the differences between rotor and bearing 
feedback. 

An interesting flexible rotor, which utilizes the unique 
capabilities of magnetic bearings, is the Annular Momentum 
Control Device (AMCD) [Anderson 19791. This device consists of a 
rotating annular rim suspended by noncontacting magnetic bearings 
mounted along its periphery. The magnetic bearings interact with 
a low-loss ferrite material, embedded in the graphite-epoxy rim, 
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producing radial and axial suspension forces. The 
five-degree-of-freedom control problem associated with this 
system was found to be challenging [Groom 1981, ~1301. The early 
approaches used single-input, single-output (SISO) control 
theory, which was found to be inadequate. Later approaches 
considered the system as a multi-input, multi-output, flexible 
system and used digital control with table look-up linearization 
of the magnetic bearing force laws [Groom 1984, p297; Groom 
1981 1. 

A number of authors have investigated the use of magnetic 
bearings in conjunction with conventional oil-film bearings to 
control instabilities in flexible shaft systems. The dominant 
instability mechanism in these cases is not shaft internal 
damping, but oil-film bearing instabilities. The use of magnetic 
bearings to add damping to a conventionally supported, flexible, 
marine power transmission shaft was investigated by Holms and 
coworkers [Nikolajsen 19791. They found that increased stable 
operating speeds were possible with the use of the active dampers 
and that synchronous vibration was also reduced. They included 
magnetic flux feedback to reduce the destabilizing force-gap 
interaction of their actuators. In related work, they determined 
the optimum force versus frequency of an actuator used to 
stabilize these oil-film supported shafts [Kaya 19841. 

Eigenstructure assignment was used in a study by [Stanway 
19841 and O'Reilly. They considered a system consisting of a 
flexible, multi-mass rotor supported in conventional, flexibly 
mounted, oil-film bearings. The housings of the oil-film 
bearings were assumed to be controlled by active forces, supplied 
in addition to the forces generated by the flexible mounting 
structure. Damping in the rotor shaft and bearing support 
structure was neglected. They showed that this system can be 
controlled through forces applied to the bearing housing and that 
rotor position and velocity feedback gains are small compared to 
bearing position and velocity feedback gains. 

In summary, the last decade has seen substantial advancement 
of the state-of-the-art in actively controlled, flexible rotors. 
This research field, which started during the late 1960's and 
early 1970's, now draws the attention of a handful of 
researchers. Early research viewed the magnetic bearings as a 
source of additional external damping applied to conventionally 
supported, flexible rotors. The emphasis in this early work was 
the placement of the actuators (magnetic bearings) and sensors. 
Also, during this early period state space models of the flexible 
rotor systems that included shaft damping were developed. The 
development of these state space models allowed the tools of 
modern, state-space based control techniques to be applied to 
controller design, which is particularly important because of the 
multi-input, multi-output characteristic of magnetic 
bearing/rotor systems. Examples of state-space based controller 
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designs include eigenvalue and eigenstructure assignment and 
linear-quadratic optimal regulators. 

1.4 Research Focus 

The research reported in this document can be divided into 
two areas, modelling and control design. The modelling effort 
consists of modelling the separate subcomponents of the ACCESS 
system and combining these component models into a system model 
useful for controller design. These subcomponent models for the 
large angle magnetic suspension, flywheel and attachment, and 
motor/generator are contained in Chapter 2. The system model 
based on these subcomponent model is presented in Chapter 3. 

The emphasis in the development of the system model is to 
model, in a form suitable for controller analysis and design, the 
unique features of activelv controlled rotor systems. The most 
important of these features is that the measurements of rotor 
position and orientation need not be colocated with actuation. 
Restated, the bearings (actuators) and measurement system 
(sensors) are not necessarily interacting with the same part of 
the rotor. In conventionally supported rotors, in contrast, the 
force produced at each bearing is a function of the time history 
of the position of the rotor at that bearing. 

The second area of investigation is controller design and 
analysis for the ACCESS system. A variety of controllers have 
been designed, based on design methods ranging from "common 
sensell control engineering to model based compensators using 
linear-quadratic regulator and Kalman filtering algorithms. The 
behavior of the controlled system to the two main problems of 
rotor dynamics, non-synchronous stability and synchronous 
response, are investigated. In building on the existing research 
in the field, three main areas are emphasized. These are: 

1) the effect of plant variation with speed and 

2) the controller requirements, especially those imposed by 
the unstable nature of flexible rotor systems. 

Both gyroscopic and internal damping effects cause the plant 
to change with rotational speed. Gyroscopic effects cause the 
frequencies of some of the plant open-loop eigenvalues to become 
strong functions of rotational speed. Internal damping causes 
the damping of some of the plant open-loop eigenvalues to become 
strong functions of rotational speed. Because of internal 
damping, some modes will show increased damping with increased 
rotational speed while others will become, less damped, becoming 
open-loop unstable at high rotational speeds. The development of 
controllers for this speed variable plant is one goal of this 
research. 

9 



Another goal is to investigate the controller/estimator 
requirements of actively controlled flexible rotor systems. In 
particular, what are the bandwidth requirements and what 
controller/estimator complexity is required to stabilize a 
high-speed, unstable, flexible rotor? 
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2. COMPONENT MODELLING AND DESIGN 

This chapter contains a brief discussion of the designs and 
models for the large angle magnetic suspension, the flywheel and 
attachment, and the motor/generator. More extensive 
presentations can be found in the referenced theses. 

2.1 Large Angle Magnetic Suspension 

Several magnetically-gimballed flywheel designs have been 
reported in the United States [Anderson 1975; Eisenhaure 1984a1, 
West Germany [Sindlinger 1976; 19771, and Japan [Murakami 19821. 
These flywheels were designed to be used in active stabilization 
of the attitude of small satellites. Gimbal angles up to about 
2" have been reported. Among these designs, several employ 
thin-walled, large-diameter flywheels [Anderson 1975; Sindlinger 
1977; Teldix 19781. One such design is the Annular Momentum 
Control Device (AMCD) [Anderson 19751. These devices demonstrate 
the design freedom that results from employing magnetic bearings 
[Hendrickson 19741. The AMCD, for example, is a thin hoop that 
is nearly six feet in diameter. Supporting this rotor by more 
conventional means would be difficult, if not impossible. Since 
that time, several alternative approaches to magnetically 
supporting and gimballing large, thin annuli have been developed 
[Groom 1981; Sindlinger 1977; Teldix 19781. In the first of 
these references, Groom describes an upgraded magnetic bearing 
and microprocessor-based controller for the AMCD. In the second 
of these references, Sindlinger describes two magnetic bearing 
designs. The first of these is an axially-passive, 
attraction-force design which he refers to as llelectromagnetictl. 
The second is a Lorentz-force approach which he refers to as 
ttelectrodynamiclt. Both of the design approaches which were 
discussed by Sindlinger are featured in the third reference which 
is a manufacturer's catalog of momentum exchange effectors. 

For many proposed large spacecraft, however, the limited 
gimbal angle capability of conventional magnetic bearings is not 
adequate. This has led to the design and investigation of "large 
angle magnetic suspensions#@ (LAMS) that allow gimballing of up to 
15". The LAMS actuator applies forces and torques in response to 
measurements of three translational and two angular positions of 
the flywheel in order to regulate the translational position 
(center the flywheel) and servo-control the angular position 
(gimbal the flywheel). 

As with conventional magnetic bearings, LAMS forces may be 
exerted through ferromagnetic-attraction or Lorentz forces. The 
LAMS system operates in an all-axes-actively-controlled mode 
since gimballing 
attraction-force 
analyzed [Downer 

is required. Three LAMS design options (two 
and one Lorentz-force) have been developed and 
19861. The two ferromagnetic attraction 
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Figure 2. Attraction-force LAMS Design Options 
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LAMS are shown in figure 2. The Lorentz force design is shown in 
figure 3. 

2.1.1 Lorentz-Force LAMS 

After a comparative study [Downer 19861, the Lorentz-force 
LAMS was chosen for the laboratory ACCESS module. The 
Lorentz-force LAMS (figure 3) consists of two identical actuators 
each containing a rotor and a stator. Each rotor 
contains an axially-oriented, permanent magnet and sufficient 
core material to yield an approximately spherically-radial 
magnetic field in the air gap. Each stator consists of a thin 
shell containing four control coils as is shown in figure 3b. 

The PM-field, Lorentz-force LAMS is similar to a 
conventional Lorentz bearing or actuator, such as a speaker 
coil. By appropriately exciting the coils, axial forces, radial 
forces, and radial torques are produce. All five control 
channels have linear force/excitation characteristics. No steady 
excitation is required to maintain the magnetic field. A 
fixed-air-gap-length magnetic circuit is used to reduce core 
losses to those caused by the magnetic fields produced by the 
stator coils. 

Figure 4. Finished LAMS Rotor Parts 

The basic dimensions of the prototype LAMS are given in 
Table 11. The finished rotor parts are shown in figure 4. The 
intermediate assembly (called the inner assembly) at the left of 
the photograph is made up of the inner pole, permanent magnet, 
and yoke. The permanent magnet is magnetized within this 
assembly. The .rotor parts are fabricated from AIS1 1018 carbon 
steel and a relatively inexpensive RE2TM17 permanent magnetic 
material. 
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Table 11. BASIC DIMENSIONS FOR LORENTZ-FORCE LAMS 

Nominal Spherical Radius 9.52 cm 3.750 in 
Air-Gap Length 0.51 cm 0.200 in 

The prototype LAMS stator was designed with a machined 
aluminum coil support. Two methods of coil fabrication were 
investigated. The baseline approach is shown in figure 5. 
Individual coil segments are machine wound using a series of 
winding fixtures. Two of the fixtures are shown in figure 5b 
(one disassembled and one assembled). The round steel washers 
and tetrahedral arbors are used to ensure the thickness of the 
coil. After winding, the flat coils are hand formed to the final 
shape. 

Figure 6 shows an alternate approach to coil fabrication. 
Wire is hand-wound onto a spherical fixture which approximates 
the shape of the coil support. Although the coil shown in the 
figure appears to be inefficient in terms of filling the 
available space, slightly more (~7%) turns were obtained using 
this technique. The shape of the hand-wound coils is somewhat 
better than that of the machine-wound coils. 

Table I11 compares the construction and resistance of the 
two types of coil. Design estimates of the resistance of the 
coil are also provided (in parentheses). The discrepancy in the 
estimated and actual resistances for the hand-wound coil indicate 
that the fill factor is only about 81% of a perfect wire 
arrangement ( ~ 6 4 % ) .  Although more turns were obtained for the 
hand-wound coil (reduced power at the expense of increased 
voltage), the finished pieces were unusable because of several 
"high spotstt which would have interfered with the spin of the 
rotor. The amount of manual labor that is required to hand wind 
a coil also produces a process that is quite expensive. 
Machine-wound coils were the baseline f o r  the ACCESS system. 

Table 111. COIL CHARACTERISTICS 

Turns Wire Size Resistance 
(AWG) (0 1 

Machine-Wound 750 31 4 9  

Hand-Wound 800 31 61 
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a) Finished Coil 

b) Fixturing 

Figure 5. Machine-wound Stator Coil 
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Figure 6. Hand-wound Stator Coil 

2.1.2 Maanetic Field Model and Test 

A series of tests on the LAMS were performed and compared 
with the predictions of models using lumped-parameter, methods to 
find the magnetic fields produced by the permanent magnet. A 
semi-analytical method [Rotors 1941; Downer 19861 is employed in 
order to create a network of lumped elements which approximates 
the actual field (magnetic load) and PM (magnetic source). figure 
7a shows the flux paths that were used to approximate the 
magnetic field in the air space near the LAMS rotor. A network 
representation for this field is shown in figure 7b. The lumped 
permeances (shown in figure 7b) are related to the permeances of 
the flux paths (shown in figure 7a) as follows. The useful 
permeance Pu is that of the useful air gap (path u). The 
fringing permeance (Pf) is the sum of the permeances of the 
fringing flux paths (paths fl, f2, f3, and f4). 

Pf = Pfl + Pf2 + Pf3 + Pf4 

The leakage permeance (PL) is the sum of the permeances of the 
leakage flux paths (paths L1, L2, L3, and L4) 

PL = PL1 + PL2 + PL3 + PL4 

The self-demagnetizing permeance (Ps) is the sum of the 

17 



permeances of the self-demagnetizing flux paths of the permanent 
magnet (paths S1 and 52) 

ps = ps1 + ps2 

The permanent magnet is represented by the Thevenin 
equivalent circuit shown in figure 8. The ideal potential source 
(Fm) and permeance (Pm) are functions of the permanent magnet 
operating point as shown in figure 8a [Downer 1986 ~2361. 

The field and permanent magnet models are combined in figure 
9. The load flux and its components are calculated from ele- 
mentary network theory and are tabulated in Table IV. 

TABLE IV. PM-FIELD MODEL PREDICTIONS 

Useful Flux 4.08 mWb 
Fringing Flux 0.90 mWb 
Leakage Flux 0.91 mWb 
Self-demagnetizing Flux 0.35 mWb 

Load Flux 6.24 mWb 

Useful-air-gap Flux Density 4.5 kG 

In order to verify the predictions of this analytical model, 
a series of flux density measurements (using a Hall effect probe) 
were taken at the radial center of the air gap of the rotor. The 
elevational angle of the flux probe (see figure loa) was varied 
in order to show the flux density profile, at the radial center 
(Ro) of the air gap, within the active region. Figure 10a 
describes the variable that was used to define position within 
the air gap. Figure 10b compares the predictions of the 
lumped-parameter model with flux density measurements. The 
useful-air-gap field (BU) predicted by this analysis is 
reasonably close to the measurements except that the fringing 
paths (fl and f2) adjacent to the useful air gap appear to be 
larger than predicted (note the rounding of the flux density 
profile). The prediction of the model and the mean flux density 
in the useful air gap are within 6% of each other. 
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a) Flux-path Approximation of a Magnetic Field 

b) Network Representation 

Figure 7. Lumped-parameter Magnetic Load Model 
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a) Operating Point of the PM e 

b) Thevenin Equivalent Circuit 0 

Figure 8. Lumped-parameter Magnetic Source Model 
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Figure 10. Permanent-magnet Field Measurements 
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2.1.3 Stator Coil ImDedance Model and Test 

A third order model of the stator coil impedance was 
developed that considers both conservative (magnetic fields) and 
dissipative (core losses in the rotor and eddy-current losses in 
the coil support) factors [Downer 1986, p237J. Figure 11 is an 
equivalent electrical circuit which describes the model. The 
series-connected resistor and inductor (rdc and lca) account for 
the dc resistance of the coil and that portion of the magnetic 
field which does not link any lossy material. Eddy-current 
losses within the coil are not considered. The two sets of 
shunt-connected resistors and inductors (rcs, lcq and rr, 1,) 
model the losses and magnetic fields in the coil support and 
rotor respectively. 

I ' [ C  I c Q L , k F ' C t L  SJ:. I Z C T z E  1 
I ! ' FE j l 5T . ' lVZL 'C7  l,b',:E2. : ! W ? E t  

I I I 

I I 

Figure 11. Stator-coil, Equivalent-circuit Model 

In conjunction with the stator model, measurements of the 
actual ACCESS stator were performed. The parameters used in the 
model were determined empirically and are given in Table V 
below. The comparison of measurement and model is shown in 
figure 12, a plot of stator coil impedance magnitude versus 
excitation frequency. As can be seen from this figure, adequate 
agreement between the model (using empirically determined 
parameter values) and the measured data was obtained. 

TABLE V. MODEL PARAMETERS 

RESISTANCE INDUCTANCE 
(m) -- (n I 

dc 49. 
4. coil/air -- 

coil support 65. 15. 
rotor 30. 50. 
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b) Test Results 

Figure 12. Useful-air-gap Flux Density Measurements 
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2.1.4 Force/Current Model and Test 

A model relating bearing force to coil current was developed 
by combining the magnetic field model, the stator coil model, and 
geometric considerations [Downer 1986, ~2431. From this model, 
the gain constants relating bearing force or torque to coil 
current were found and are presented in Table VI. 

TABLE VI. STATIC FORCE/CURRENT GAINS 

Radial force constant 9.95 N/A 
Axial force constant 8.82 N/A 
Radial torque constant 1.27 Nm/A 

In conjunction with this model development, the static, 
axial thrust of the LAMS was measured through the use of a 
tension-test machine. The stator of the LAMS was attached to the 
load cell and one coil was excited with constant current while 
the rotor was attached to the base via a three-degree-of-freedom 
test fixture. This three-degree-of-freedom test fixture allows 
the stator coils to be moved relative to the rotor along the 
radial and axial directions and rotated along a radial axis. 

The results of the axial force test with the coil centered 
in the air gap are compared to the model in figure 13. The data 
show that the actual gain is about 7% lower than predicted. 
Figure 14 shows the effect on axial force of translational motion 
of the stator relative to the rotor. Figure 14a shows the effect 
on axial force of motion along the radial axis on which the coil 
is mounted. No variation in force was found for motion along the 
perpendicular radial axis. Figure 14b shows the effect of axial 
motion on the axial force. Figures 15a and 15b show the 
variation in thrust force with the relative angular position of 
the rotor. Angular motion about the axis perpendicular to the 
axis on which the coil is located has the greatest effect on the 
force. This is caused by the coil moving into or out of the 
useful air gap thereby increasing or decreasing the size of the 
active region. 

2.2 Wotor/Generator 

A flywheel energy storage system requires a very high 
efficiency motor/generator to transfer energy bidirectionally 
between the spinning flywheel and the electrical bus. This 
machine must operate as both a motor and generator over the 
anticipated 2:l speed range of the flywheel. For lightweight and 
relatively small spacecraft, weight and volume of system 
components are critical factors. This design goal demands a 
high-efficiency motor/generator. The specifications for the 
prototype ACCESS module are shown in Table VII. 

2 5  



N . 
CI 

p. 

0 

CI 

e 

G 
m 
J O  - .  
0 

e 
0 
I 

ED 

? 

N 

I 

. - 

N T S  

00.0 
I 1 I 

-400.0 0.0 400.0 
CURRENT [MILLI-RMPSI 

1 

800.0 

Figure 13. Thrust Force Produced by a Centered LAMS Coil 

26  



I I 

- V I  
. h  

LO ai 

x: 
0 

? 
0-  

CUDRENT (mA)  

600 

, 30.0 
c 

4 

2c.c 
Y .. - K 

Y 
- ., - 

inn 
I v v  .- . 

0 4 

I I I I 1 1 
13 -0.02 -0.01 0.00 0.01 0.02 0.03 

LATERRL DISPLACEBENT ( I N . )  

a )  Lateral Motion C U R k E N T  (mA) 

c 

300 

200 
0 - 0 

I co 
I , I I I O.OO0 0.005 0.010 I 0.015 I 0.030 I -0.020 -0.015 -0.010 -0.wIs 

AXIAL DISPLACEHENT IIN.1 

b) Axial Motion 

Figure 1 4 .  Effect of Linear Motion of the Rotor 

27 



1 1 I I 1 
0.0 2.5 5.0 7 -5 10.0 D.0 -7.5 -5.0 -2.5 

RNGULRR DISPLRCEMENT [DEG. 1 

a) About the Axis of the Coil 
c u K R E N T C~IA) 

/e? 
/ / 400 

b) About an Axis Perpendicular to the Coil 

Figure 15. Effect of Angular Motion of the Rotor 

28 



TABLE VII. PROTOTYPE DEVELOPMENT SPECIFICATIONS 

r 4 

TY Pe Advantages Disadvantages 

PM Reluc- No f i e l d  windings. Po ten t i a l  l a rge  side forces. 
tance PM's are stat ionary.  Voltage is a func t i on  o f  

Wound-field Can cont ro l  voltage by Power used t o  generate f i e l d  
Synchronous changing f i e l d  strength. i s  lost .  Rotor and s t a t o r  

copper loss. Side forces. 

Induct ion Has simple, rugged de- Inherent r o t o r  losses. Hard 
t o  remove heat from rotor .  
Large side forces. Rotor and 
s t a t o r  copper loss. 

Magnets t y p i c a l l y  rotate;  
p o t e n t i a l  l a rge  side forces. 
Voltage is  a funct ion of 
speed only. 

speed only. 

s ign 

Conventi onal No f i e l d  w i  ndi ngs. 
Sync hronout 

PM 

I ron less/  
Rotat ing eddy current losses. Voltage is a func t i on  of 
Back-iron Low side force. , speed only. Expensive. 

Minimizes hysteresis and More complex mechanically. 

Readily avai lab le high magnets. 
energy product magnets. 

Generator Output 
Operational Speed Range 
Bus Voltage 

I 

1 kW 
1 O /  2 0 krpm 
200 Vdc 



TABLE IX. 

IRON 
LOSS 

COPPER 

S IDE-LOAD 

COMPLEXITY 

FINAL MACHINE CANDIDATES 

PM PM 
SYNCHRONOUS "IRONLESS" INDUCTION 

MED VERY LOW LOW 

12Rsta 1 2Rs ta 12(Rsta + Rrot) 

YES NEGLIGIBLE YES 

MED HIGH LOW 

INDUCTION MACHINE 

PM "IRONLESS" 

CONVENTIONAL PM 

Machine choices were further reduced by calculating [Larkin 
1985, p22] the side-force negative spring constant for each 
machine. This is the force which acts to pull the rotor toward 
the stator and is therefore an unstable rotor force and must be 
counteracted by the magnetic bearing. The results of this 
analysis using parameters from existing machines and assuming a 
1000 pound flywheel are shown in Table X. An unstable 
*tfrequencytt (exponential rate of growth) of 150 rad/sec is 
sufficiently high to rule out the induction machine since it 
would place bandwidth restriction on the magnetic suspension 
which is much greater than that dictated by momentum control 
considerations [Oglevie 19851. While techniques exist to 
inherently stabilize the side-force of an induction machine, they 
have been shown to require operation in the high-slip region, 
which is the low efficiency region of operation [Basore 19821. 

TABLE x. CANDIDATE MACHINE SIDE-LOADING FORCES 

SPRING NATURAL 
CONSTANT FREQUENCY 

(m = 455 kg) 

11 X 106 N/m 154 rad/s 

NEGLIGIBLE < 0.1 rad/s 

285 X lo3 N/m 25 rad/s 
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The ironless stator/rotating back-iron permanent magnet 
machine has comparatively lower losses and a lower spring 
constant than a more conventional permanent magnet 
motor/generator, making it the most efficient alternative for a 
satellite application. A cutaway sketch of such a machine is 
shown in figure 16. The unusual spherical air gap is required to 
allow angular tipping of the flywheel by the large angle magnetic 
suspension, discussed above. The following few paragraphs 
briefly discuss the unique spherical air gap design. For a more 
detailed description of the machine and presentation of the 
design analysis, refer to the recent thesis by Larkin [1985], 
"Design and Optimization of a Motor/Generator for Use in a 
Satellite Flywheel Energy Storage System". 

' /  I 
STATOR 1 

POLE PIECE 

Figure 16. Spherical Air-gap Ironless Stator/Rotating 
Back-iron PM Machine 

As shown in figure 16, all steel portions rotate with the 
machine ( ttrotating back-ironn) while the stator is comprised of 
copper windings and a thermal/structural epoxy support (Ilironless 
statortt). The spherical design for the air gap and stator is 
required to allow tipping of the rotor. 

The rotor assembly is shown in figure 17 and depicted 
schematically in plan view in figure 18. The rotor is comprised 
of a back-iron, a magnetic ring, eight pole pieces and a return 
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path. The cylindrical permanent magnet ring is made up of eight 
radially magnetized, alternating N-S segments of SmCo5 permanent 
magnet. The steel alloy cylindrical back-iron and 
spherical-sided return path are sized to carry the magnetic 
flux. The wedge-shaped steel alloy pole pieces shape the 
magnetic field over the spherical air-gap. 

Figure 17. Prototype Motor/Generator Rotor 

RETURN PATH-, n a = back-iron outer diametc 
b = back-iron inner diametf 
c = return path inner 

d = magnetic ring inner 
diameter 

diameter 

$2 = leakage flux 
= useful flux 

Figure 18. Spherical Air-gap Ironless 
PM Rotor Sketch - Plan View 
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The stator, shown in figure 19, is a three-phase, 2/3 pitch 
design. Each phase is made up of 5 turns/pole/phase (120 stator 
turns total). The winding material is Litz wire, a braided cable 
made up of individual thin strands of copper wire. The type of 
Litz wire selected for this application is comprised of 96 
strands of number 36 AWG wire. The free standing coils are 
potted in a high thermal conductivity epoxy for structural 
support and cooling. 

Figure 19. Prototype Motor/Generator Stator 

2.3 Flywheel and Spoke Structure 

One of the requirements of a competitive flywheel energy 
storage system for space-based applications is high energy 
storage per unit mass (specific energy density). To accomplish 
this, the spin-induced stresses in the flywheel must approach the 
limits of the flywheel imposed by the flywheel material. Simple 
stress analysis of flywheels indicates that the greater the 
strength-to-weight ratio of the material, the higher the 
achievable specific energy density. Therefore, fiber-based 
composite materials, because of their high specific strength, 
should be employed. 

On the other hand, although composites have good strength 
along the fiber, or tangential, direction, they are relatively 
weak along the radial direction. For example, the off axis 
strength of boron/epoxy composites is only 5.2% of the strength 
in the fiber direction [Foley 1986, ~ 1 4 1 .  In order to keep the 
stresses in the radial direction low and thereby maintain optimal 
energy density, composite flywheels usually take the form of 
relatively thin rings. Therefore, as the flywheel approaches 
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ultimate strain at the higher rotational speeds, it can undergo 
large radial displacements. 

The problem with large radial displacements is that the 
classic non-compliant radial spoke can not support them. As the 
speed increases, these spokes will place large radial loads in an 
attempt to constrain the wheel's growth, resulting in wheel burst 
below predicted speeds. Flywheel systems have been developed 
with radially preloaded flywheels, loaded such that a compressive 
load always exists between the spoke and flywheel. The logic 
behind this scheme is that the flywheel never grows enough to put 
tension on the spokes. At the ultimate speeds, however, nearly 
the entire radial centripetal weight of the spoke would be 
supported by the inner hub assembly. Since the hub assembly of 
the ACCESS system contains the electromagnetic bearings and 
motor/generator rather than a solid shaft, it is simply not 
strong enough to support radial loads as large as these. 

The size and shape of the flywheel combined with the 
sensitivity of the hub assembly leads to the realization that to 
preserve optimality, the attachment structure used between the 
hub and flywheel must be compliant so that it can grow with the 
wheel. Other requirements include the desire for controller 
simplification to decouple the tilt (angular) dynamics from the 
translational (radial) dynamics. The ACCESS laboratory module 
was sized for a boron/epoxy flywheel 13 cm tall with an inner and 
outer radius of 20 cm and 25 cm respectively. This 17 kg 
flywheel was to have an approximate top speed of 20000 rpm. 
Because of scheduling and cost constraints, a high-strength steel 
flywheel of similar inner radius and mass was used instead of the 
composite wheel. This flywheel has a maximum speed of 
approximately 16000 rpm. The important inertia properties of 
this wheel are given in Table XI. 

TABLE XI. ACCESS LABORATORY FLYWHEEL INERTIA VALUES 

Mass (kg) 

Axial Moment of 
Inertia Izz (kgm2) 

Radial Moment of 
Inertia Irr (kgm2) 

Flywheel Hub Total 
17 19 36 

0.70 0.10 0.80 

0.37 0.090 0.46 

Despite the many constraints placed on size, shape, and 
orientation of the ACCESS spokes, several different candidate 
configurations exist. A recent thesis by Foley [1986] develops 
and analyzes these different spoke configurations. Figures 20, 
21, 22, and 23 are examples of spoke designs that were analyzed 
by Foley. 
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Figure 22. Best U-spring Spoke 

Figure 23. Sample Dogleg Spoke 
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The final design, an optimized dogleg spoke, is shown in 
figure 24. The spoke structure characteristics of concern for 
the dynamic model are the radial and angular stiffness and 
damping. The stiffnesses of the individual spokes were 
statically measured. Based on these measurements, the 
stiffnesses of the total spoke structure can be calculated. No 
measurements of the ACCESS spoke damping have been made. The 
damping parameters will be somewhat arbitrarily selected to give 
a loss factor at resonance of 0.01 (a damping ratio of 0.005). 
The measured, calculated, and assumed spoke structure 
characteristics are given in Table XII. 

h e i  

Figure 24. Optimized Dogleg Spoke 

TABLE XII. ACCESS SPOKE CHARACTERISTICS 

Translational Characteristics 

Stiffness kr 4.1 x lo6 N/m 
Damping Cr 61 kg/sec 

Angular Characteristics 

Stiffness ka 1.0 x lo5 Nm/rad 
Damping Ca 0.87 kgm2/sec 
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3. SYSTM DYNAMICS MODEL 

CONTROL SIGNALS MEASURED 
MEASUREMENT 

'ONTROLLER 'ROTOR DISPLACEMENTS 

Based on the subcomponent models discussed in Chapter 2, a 
model of the system dynamics was developed. A general 
block-diagram of the system is shown in figure 25. The rotor is 
controlled by forces and torques provided by the actuator, the 
Lorentz-force, large angle magnetic bearing presented earlier. 
The positions and tilt angles of the hub and flywheel are 
measured and used as inputs to the controller. The outputs of 
the controller are signals controlling the power amplifiers that 
drive the magnetic bearing. For conventional magnetic bearings, 
the bearing forces and torques would also be a function of the 
displacements of the hub as well as input currents, as shown by 
the dashed lines. For the Lorentz-force bearing such as used in 
the ACCESS system, however, there is no force-displacement 
coupling to first order. 

< 

DESIRED ROTOR DISPLACEMENTS 

Figure 25. Block Diagram of a Magnetic Bearing System 
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MASSES 

BEARING FORCES I 
AND TORQUES 

FLEXIBLE 
CONNECTING 
STRUCTURE 

Figure 26. Cut-away of a Toroidal, Multi-body, Flexible 
Rotor System. 

The ACCESS hardware is modelled as two rigid body masses, 
the hub and the flywheel, connected by a damped, elastic 
structure, the spokes system. The magnetic suspension force 
torque act on the hub, as shown in figure 26. Each of the 
rigid-body masses in figure 26 has three translational and three 
angular degrees of freedom. This research did not address the 
dynamics of two of these degrees of freedom, the translational 
degree of freedom along the axial direction or the angular degree 
of freedom associated with the spin axis. The axial, 
translational degree of freedom is neglected because to first 
order its dynamics are not a function of rotational speed and do 
not couple with the dynamics of the other degrees of freedom. 
Control of these axial dynamics is the subject of work by [Downer 
19803 for an all-active magnetic bearing system. Angular 
displacement control of the spin axis angular degree of freedom 
is not usually desired, only angular velocity control. Also, 
these torsional dynamics are not usually controllable by the 
magnetic bearing system. They may have, however, important 
effects on the motor controller dynamics. This problem is not 
addressed in this report. 

The model development will be briefly sketched here, more 
detail can be found in a recent thesis by Johnson [1987] and 
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Appendix A. The system model development starts by obtaining the 
relations between applied force and torque and the resulting 
position and orientation of each rigid body mass. Small angular 
motions are assumed, leading to linearized relations. The force 
and torque produced by the spoke structure are then related to 
the relative positions and orientations of the hub and flywheel. 
These relations describing the spoke structure will also be 
assumed linear. The bearing force and torque and measurement 
system descriptions are then added to complete the system model. 

I 

For use in the research reported here, perfect inertial and 
spoke geometries were assumed, analogous to assuming a perfectly 
balanced conventional rotor system. Other assumption, either 
made explicitly or implicitly include: 

The flywheel and hub are assumed to behave as 
rigid-bodies over the frequency range of interest. 

The rigid-bodies have an axis of symmetry, which is the 
nominal spin axis. 

The dynamics of the rotational speed are slow compared 
to the flexible mode frequencies. 

The angular orientation of the rigid bodies, that is 
the amount of tipping, is small. 

The spoke structure is a linear, elastic structure with 
linear damping 

The nominal spin axis of the hub and flywheel is an 
axis of symmetry for the spoke structure which, there- 
fore, is assumed to have rotationally anisotropic 
translational and angular stiffnesses. This implies 
that there is no torque-radial displacement or force- 
angular displacement coupling and that the tensor re- 
lation between generalized displacements and general- 
ized forces reduces to scalar relations [Foley 19861. 

The force generated by the spoke structure acts through 
the centers of mass of the hub and flywheel. 

The spokes are very light compared to the hub or 
flywheel masses. 

The bearing force and torque depend only on input 
current and are linear with current. 

The bearing force acts through the center of mass of 
the hub. 

The measurement system measures the position of the hub 
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center of mass and the orientation of the hub nominal 
spin axis. 

These assumptions lead to a model capable of predicting the 
non-synchronous response of the system, which is the focus of 
this report. With these assumptions, the system dynamics 
decouple into two separate models, one describing the 
translational (radial) dynamics and the other describing the 
angular (tilt) dynamics. Also, because of the axial symmetry, 
complex notation can be advantageously used, reducing the size of 
the system descriptions and providing increased physical insight 
[Johnson 1987, Chapter 4 3 .  The following two sections present 
the translational and angular models along with their open-loop 
properties. 

3.1 Translational Open-Loop Model 

The open-loop translational model is described by a eight 
state system. The states consist of the flywheel and hub 
position and velocity in the x and y (radial) directions. Using 
complex notation, this state is given by 

where 
z = x + jy, 
j = square root of -1, 
the f and h subscripts refer to flywheel and hub. 

Put into state-space form, with complex state variables, 
these equations of motion are 

- 2 + fC 'I 0 

-(Kt - jnCt) -Ct = [  z - 

where the normalized radial damping matrix Ct and radial 
stiffness matrix Kt are 

mf 
Ct = I mf 

where 
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kt and ct are the spoke radial stiffnesses and damping 
mf and mh are the flywheel and hub masses, 

fc is a vector of normalized, complex bearing control forces 

where 
fc = [ O ,  0, 0, (fx + jfy)/mhIT 

fx and fy are the bearing x and y direction forces, 
and n is the rotational speed. 

The important destabilizing effect of internal (spoke) 
damping can be seen in the nCt term in the above equations. 

Substituting the subcomponent values for the above 
parameters yields the following complex representation of the 
translational dynamics, 

- z = vector of complex hub and flywheel positions and 
velocities in units of meters or meters per second 

fc = complex force expressed in Newtons 

yc - in units of meters. 
- complex scalar representing the hub measured position 

Using the parameter values developed above, these matrices have 
the following numerical values for the laboratory module. 

c 

0 
O 1  

0 1 

0 0 0 1 

-2.47 x 105 + j 3 .63n  2 .47  x 105 - j 3 . 6 3 n  -3.63 3.63 
A c =  

_1 L 2.16  x 105 - j 3 . 1 7 n  -2.16 x 105 + j 3 . 1 7 0  3.17 -3.17 

1 1 0  

0 
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where 

n = rotational speed measured in rad/sec. 

Note that this is a linear, time invariant system that is a 
function of the rotational speed 0. Also, using the complex 
notation, this is single-input, single-output system that can be 
described by a complex coefficient transfer function (CCTF) 
[Johnson 1987, Section 4.111. 

The controllability and observability of this system were 
examined over a wide speed range. The translational dynamics 
have been shown to be controllable through application of the 
bearing force and observable though measurements of the hub 
position [Johnson 19871. The translational ACCESS model is 
therefore a well posed control problem. 

The most important feature of the open-loop translational 
model is that it becomes unstable at super flexible rotational 
speeds. This is shown in figure 27, a root-locus of the pole and 
transmission zero locations of the complex representation as the 
rotational speed is changed. The system is described by a pair 
of poles at the origin corresponding to the rigid body motion of 
the hub and flywheel in both x and y directions. The other pole 
and transmission zeros describe the reduced-mass vibration of the 
hub-spoke-flywheel system. Using the complex representation, 
these flexible-mode resonances in the x and y directions can be 
considered as forward and backward whirl modes in the usual 
rotordynamic fashion [Johnson 1987, Section 5.21. The pole and 
transmission zero with positive imaginary parts correspond to the 
forward whirl mode. The pole and transmission zero with negative 
imaginary parts correspond to the backward whirl mode. 

- 

I 

21 1 -ju 

X W L4t;rr3N 

3 -nrwU1fs,:N z.c ccCA3su 

Figure 27. Root-Locus as a Function of Rotational Spee4 
Open-Loop Translational Model 
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A s  the rotational speed is increased, the nole and 
transmission zeros move from their zero speed locations, as shown 
by the arrows in figure 27. At super flexible rotational speeds, 
the forward whirl pole and transmission zero have moved into the 
right half plane, indicating that the system has become open-loop 
unstable. The movement of the forward whirl mode into the 
right-half plane can also be seen in figure 28, a plot of the 
flexible-mode damping versus rotational speed. The damping of 
the forward flexible mode (solid curve) becomes negative and the 
open-loop system unstable at a rotational speed of 680 rad/sec. 
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Figure 28. Eigenvalue Damping versus Rotational Speed 
for the Open-loop Translational Model 

The Bode plot of the system at zero rotational speed is 
shown in figure 29. The system falls off at a slope of -2 
because of the double integration of the rotor mass. The effect 
of the hub-spoke-flywheel resonance is seen by the zero (trough) 
and pole (peak) in the amplitude. Note that the resonance occurs 
at about 670 rad/sec, within the rotational speed range of the 
system. At a super-flexible rotational speed of 1000 rad/sec, 
the system has become unstable and the forward and backward 
transfer functions (s = +jo) and (s = - j w )  have become distinct 
because of the complex nature of the representation [Johnson 
1987, Chapter 4 1 .  The magnitude response is similar to the zero 
speed case, but the forward (solid curve) and backward (dashed 
curve) transfer functions have different phase as can be seen in 
figure 30. 
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3.2 Angular Open-Loop Model 

The open-loop angular model has a similar form to the 
translational model with the addition of gyroscopic terms. The 
angular model is described by an eight state system. The states 
consist of the flywheel and hub orientation (tilt) and angular 
velocity about the x and y (radial) directions. Using complex 
notation, this state is given by 

- 2 = [$f, $hr if, $hlT 

where 
3 = 4 + jd, 
4 = tilt (orientation) of the body relative to the x axis 
B = tilt (orientation) of the body relative to the y axis 
j = square root of -1, 
the f and h subscripts refer to flywheel and hub. 

Put into state-space form, with complex state variables, 
these equations of motion are 

- Z + LC 

I 1  

0 

-(Ka - jnCa) -(Ca -jnG) 'I - ; - - 

where the normalized angular damping matrix Ca, gyroscopic matrix 
G, and angular stiffness matrix Ka are given by 

G =  

- 
- Ihr and Ifr are the hub and flywheel radial 

ka and Ca are the spoke angular stiffnesses and damping 

inertia - Ihz aid Ifz are the hub and flywheel axial 
inertia, 

moments of , 
~ 

moments of 

L~ is a vector of normalized, complex bearing control 

LC = l o ,  0, 0, (zx + jry)/~hr~~ 

where 

torques 

zx and zY are the bearing x and y direction torques, 
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and n is the rotational speed. 
Substituting the subcomponent values for the above 

parameters yields the following complex representation of the 
angular dynamics, 

A t )  = Ac(n)z(t) + b c d t )  

Yc(W = &(t) 

where 

- z = vector of complex hub and flywheel orientations and 
angular velocities in units of radians or radians per 
second 

r C  = complex torque expressed in Newton-meters 

yc - orientation in units of radians. 
- complex scalar representing the hub measured 

Using the parameter values developed above, these matrices have 
the following numerical values for the 

A c =  

0 

0 

-2.78 x lo5 +j2.32 

1.16 x lo6 -j9.68 
L 

-c b -  - 

- 0  

0 

0 

11.2 - 

0 

0 

2.78 x lo5 -j2.32 

-1.16 x lo6 +j9.68 

laboratory module. 

1 

a 

0 

0 1 

-2.32 +j1.87 2.32 

9.68 -9.68 +j1.14 - 

where 

~ n = rotational speed measured in rad/sec. 

These complex matrices have a similar form to the 
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translational matrices except for the addition of gyroscopic 
terms proportional to rotational speed n. These gyroscopic terms 
appear in the last two diagonal elements of the complex state 
dynamics matrix &. 

The controllability and observability of angular dynamics 
were investigated as a function of the rotational speed. For a 
wide speed range, 0 5 n 5 lo5, the angular model is controllable 
through application of the bearing torque and observable through 
measurements of the hub position. The angular ACCESS model is 
therefore a well posed control problem. 

In contrast to the translational model, the angular model is 
open-loop stable at all rotational speeds. Unlike the 
translational model, the frequency of the open-loop eigenvalues 
is a strong function of rotational speed because of the 
gyroscopic effects. This is shown in figure 31, a root-locus of 
the open-loop pole and transmission zero locations versus 
rotational speed. At zero speed the system is described by two 
poles at the origin representing the rigid-body dynamics and the 
pair to poles and transmission zeros representing the flexible 
mode dynamics, similar to the translational model. As the 
rotational speed is increased the poles and transmission zeros 
move in the directions indicated by the arrows. Note that 
because of gyroscopic effects, one of the rigid-body poles 
located at the origin at zero speed moves upward along the jw 
axis, in contrast to the translational model. 

f ”” 

x P C G  LOCATION 

TRiWSUISSiCN E.. LCCMON 

Figure 31. Root Locus versus Rotation Speed: Open-loop Angular 
Model 
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The movement of the open-loop poles as a function of 
rotational speed can be dramatically seen in figure 32, which are 
plots of open-loop eigenvalue frequency and damping versus 
rotational speed. Again, the forward whirl modes are indicated 
by solid curves and the backward whirl modes by dashed curves. 
Note that the forward whirl modes increase in frequency with 
increasing speed and the flexible backward mode decreases. 

Bode plots of the open-loop angular dynamics are shown in 
figures 33 through 35. At zero rotational speed, figure 33, the 
Bode plot has a similar form to the translational dynamics but 
with a slightly higher flexible-mode eigenvalue frequency of 1200 
rad/sec. As the rotational speed is increased, figures 34 and 35 
the forward and backward transfer functions become distinct, both 
in phase and magnitude. Also note the overall reduction in 
open-loop gain as the speed is increased (compare figure 33a to 
35a). 
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4.  STABILITY REQUIREMENTS 

The open-loop ACCESS system was seen in the last chapter to 
present an interesting variety of control problems. The dynamics 
were decoupled into two models, a translational model and an 
angular model. Both models were seen to vary significantly with 
rotational speed. For the translational model, the open-loop 
damping of the flexible modes varies most strongly with 
rotational speed, with the forward flexible mode becoming 
unstable at super-flexible rotational speeds. These open-loop 
instabilities will place minimum bandwidth and gain requirements 
on stabilizing controllers. In conjunction with the movement of 
these open-loop poles into the right-half-plane (RHP), the 
transmission zeros associated with the forward flexible mode move 
into the RHP, becoming non-minimum phase transmission zeros. 
These non-minimum phase transmission zeros will place 
corresponding maximum bandwidth and gain restrictions on 
stabilizing output-feedback compensators. 

The angular plant is also a strong function of rotational 
speed, with the frequencies of some of the open-loop poles being 
proportional to rotational speed. The open-loop singularities of 
the angular model vary more strongly with rotational speed than 
do the translational singularities. The control of the angular 
model over a wide speed range with a fixed-gain controller 
should, therefore, be more difficult than for the translational 
model. The open-loop singularities of the angular model, 
however, all remain in the Left-hand Plane (LHP) at all speeds, 
which eliminates the controller restrictions on bandwidth that 
are faced with the translational model. 

The stability properties of the closed-loop translational 
and angular models are one of the major results of this study. 
The closed-loop stability properties were analyzed using recently 
developed control analysis tools for systems described by complex 
coefficient differential equations [Johnson 19871. These include 
closed-loop eigenvalue locations of the complex representations 
and the 88complex11 SISO Nyquist gain and phase margins. In 
addition to these measures of stability and stability robustness, 
the research also explicitly determined the stability robustness 
to variation in plant speed and variation in spoke damping and 
stiffness. 

A variety of controllers were investigated for both the 

1) Variable gain, full state feedback, linear quadratic 

2 )  Fixed gain, full state feedback, linear quadratic 

translational and angular models [Johnson 19871. These include: 

regulators 

regulators 
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3 )  Fixed gain, output feedback compensators design using 
linear quadratic regulator and Kalman filter 
algorithms, the so called IIModel Based Compensatorsvv 
[Doyle 19811 

4) Fixed gain, output feedback, lead-lag compensators 

Chapter 6 of this report will present representative controllers 
for the two models, a fixed-gain, model-based-compensator (MBc) 
for the translational model and a lead-lag compensator for the 
angular model. A more detailed description of the various 
controllers can be found in Appendix B and a more extensive 
presentation of the closed-loop results can be found in [Johnson 
19871. 
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5 .  CONTROLLER EXAMPLES 

5.1 Closed-Loop Translational Example 

The closed loop translational example that will be presented 
is a fixed-gain, output-feedback, model-based-compensator. This 
particular controller features a closed-loop bandwidth 
(rigid-body cross-over) slightly below the flexible-mode 
frequency. The compensator was designed for a rotational speed 
of 1000 rad/sec. Recall that at this super-flexible rotational 
speed the open-loop system is unstable. 

As for the open-loop plant, the closed-loop plant can be 
described by the complex coefficient transfer function (CCTF), a 
single-input, single-output transfer function with complex 
coefficients. For this compensator, the CCTF of the compensator 
is shown in figure 36. The forward whirl transfer function 
(positive frequencies) is given by the solid curve and the 
backward whirl transfer function (negative frequencies) by the 
dashed curve. Note that these transfer functions consist of a 
lead-lag with a notch at the flexible mode frequency. As can be 
seen in figure 36b, the forward whirl transfer function features 
a right-hand-plane (RHP) transmission zero. 

The Nyquist plot of the loop transfer function, plant plus 
compensator, is shown in figure 37. For this figure, the plant 
rotational speed was set equal to the design rotational speed of 
1000 rad/sec. Note that the Nyquist plot encircles the -1 point 
once in a clockwise direction as required for closed-loop 
stability with an open-loop unstable plant. From this plot, the 
phase margin is seen to be approximately 55' at the worst 
cross-over. The upward gain margin is approximately 20db and the 
downward gain margin is approximately 14 db. 

At this rotational speed, the closed-loop eigenvalues of the 
plant are given in Table XI11 below. These closed-loop 
eigenvalues have been divided into those associated with the LQR 
loop and those associated with the Kalman Filter loop. 

TABLE XIII. CLOSED-LOOP EIGENVALUES FOR THE TRANSLATIONAL CASE 

m Kalman Filter 
Closed-Loop Eiqenvalues Closed-Loop Eiqenvalues 

-120 + j12O 
-120 - j12O 
-18 + j680 
-20 - j680 

-10 + j497 
-12 - j497 

-1600 + j680 
-1600 - j680 
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The two low-frequency LQR poles are associated with the 
cross-over frequency of the system and are placed in well damped 
positions. The poles associated with the flexible-modes have 
been placed in stable, lightly damped positions. 

The results presented above are for a fixed rotational speed 
of 1000 rad/sec, the design rotational speed of the MBC. Figure 
38, in contrast, presents the closed-loop eigenvalue frequencies 
and damping when the plant rotational speed is allowed to vary. 
In this figure, the model-based-compensator has been fixed and 
the plant varies because of its dependence on rotational speed. 
Note that the closed-loop system remains stable until a 
rotational speed of greater than 4000 rad/sec. This is outside 
the possible speed range of the ACCESS system and significantly 
greater than the rotational speed of 670 rad/sec at which the 
open-loop translational system becomes unstable. 

5.2 Closed-Loop Angular Example 

The closed-loop angular example that will be presented in 
this section is a simple fixed-gain, lead-lag compensator. This 
compensator is designed to have a rigid-body cross-over of 
approximately 200 rad/sec, which is below the flexible mode 
frequency of 1200 rad/sec, when the system is not spinning. The 
lead in the compensator is placed about a half decade below the 
desired zero-speed cross-over frequency and the lag about a half 
a decade above the flexible mode frequency. This can be seen in 
figure 39, the Bode magnitude and phase plots for this lead-lag 
compensator. 

The loop gain for this compensator is shown in figure 40 for 
a plant rotational speed of 200 rad/sec. Again, the forward 
whirl transfer function is given by the solid curve and the 
backward whirl transfer function by the dashed curve. Note that 
the low-frequency cross-over has been significantly reduced from 
the desired zero-speed value because of the reduction in plant 
gain that occurs with increasing rotational speed. Because of 
this reduction in low-frequency gain, the negative phase margin 
has been reduced to approximately 30' from the zero speed value 
of greater than 60". The positive phase margin, however, remains 
at about 60". The upward and downward gain margins are formally 
infinite, reflecting the open-loop stable nature of the angular 
plant. 

The closed-loop eigenvalues for this speed are given in 
Table XIV. The first two eigenvalues correspond to the forward 
and backward rigid-body modes. Note that because of gyroscopic 
effects, these two eigenvalues have split in frequency, with the 
forward whirl mode increasing in frequency compared to the 
backward whirl mode. They are both well damped, however. The 
next two eigenvalues are associated with the flexible modes of 
the system. Again, the forward and backward modes have split 
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in frequency. These modes are significantly better damped than 
their open-loop locations. The last eigenvalue corresponds to 
the lead of the compensator. 

TABLE XIV. ANGULAR CLOSED-LOOP EIGENVALUES 

Eiaenvalue Location 

-177 + j247 
-27 - j37 

-532 - j1338 
-489 + j1178 
-2582 - j69 

In contrast to the translational example, the angular model 
under lead-lag compensation remains stable at all rotational 
speeds. This can be seen in figure 41, a plot of the closed-loop 
eigenvalues versus rotational speed. The eigenvalue frequencies 
are shown in figure 41a where the forward whirl modes (solid 
curves), backward whirl modes (dashed curves), and compensator 
lag pole (dotted curve) can clearly be seen. The damping of the 
closed-loop eigenvalues is shown in figure 41b, where the system 
is seen to remain stable at all rotational speeds. At 
super-flexible rotational speeds, the damping of the forward 
whirl modes (solid curves) decreases significantly with 
increasing rotational speed. This is primarily caused by the 
increased frequency of these modes with increasing speed. 
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CONCLUSIONS 

This report has presented the results of an investigation of 
the control an advanced Annular Momentum Control Device (AMCD) , 
the AMCD Combined Control Energy Storage System (ACCESS). This 
system, which consists of high-speed, magnetically suspended 
flywheels, presents a variety of control problems because of the 
open-loop unstable nature of its operation at high rotational 
speeds and the variation of its dynamics as the rotational speed 
is changed. This research has included the development of a 
dynamic model of the system and the design of stabilizing 
controllers. 

The ACCESS system was modelled as a two rigid-bodies, the 
hub and flywheel, connected by a damped, elastic structure, the 
spoke system. The system is controlled by a Lorentz-force 
suspension that applies force and torque to the hub. The bearing 
force and torque are controlled by a controller having access to 
measurements of hub position .and orientation. This model, 

damping, and gyroscopic motion. 

The system dynamics of concern to the bearing controller, 
which are the translational or radial motion and the angular or 
tipping motion of the rotor masses, are shown to decouple into 
separate translational and angular models. Each of these models 
describes a two-input, two-output system relating hub 
translational position to bearing force for the translational 
model and hub angular orientation to bearing torque for the 
angular model. These models exhibit "block-symmetric" structure 
because of the assumed rotational symmetry. Because of this 
block-symmetric structure, complex notation is used, providing a 
compact and powerful method of expressing the dynamics of these 
symmetric systems. 

I therefore, includes the effects of rotor flexibility, internal 

These complex coefficient system equations are used to 
describe both the translational and angular models. Over the 
operational speed range of the ACCESS system, these models are 
both controllable through the application of bearing force and 
torque and observable through measurements of hub position and 
orientation. The open-loop behavior of both models are seen to 
vary significantly with rotational speed. For the translational 
model, the open-loop damping of the flexible modes is shown to 
vary most strongly with rotational speed, with the forward 
flexible mode becoming unstable at super-flexible rotational 
speeds. In conjunction with the movement of the open-loop poles 
into the right half plane (RHP), the transmission zeros 
associated with these modes also move into the RHP, becoming 
nonminimum phase transmission zeros. 

The angular plant is also shown to be a strong function of 
I rotational speed, with the frequencies of some of the open-loop 
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poles proportional to rotational speed. Although the open-loop 
singularities of the angular model vary more strongly with 
rotational speed than for the translational model, all of the 
angular singularities remain in the left half plane for all 
rotational speeds, in contrast to the translational model. 

Various feedback controllers were investigated for both the 
translational and angular models. These include variable-gain, 
full-state feedback controllers based on linear-quadratic 
regulators (LQR); fixed-gain, full-state feedback LQR's; 
output-feedback, model-based-compensators (MBC) designed using 
fixed-gain Kalman filters as state estimators in conjunction with 
f ixed-gain LQR's; and simple output-feedback, lead-lag 
compensators. Two representative examples of these controllers 
were presented, a model-based-compensator for the translational 
model and a lead-lag compensator for the angular model. The 
conclusions presented below are based on the research reported 
here and on a more extensive variety of controllers, which can be 
found in Johnson [1987]. 

Using the variable-gain, full-state feedback LQR, the effect 
of different gains on closed-loop stability was investigated. 
The use of cross-axis feedback gains, which are gains relating 
the force along one axis to measurements of rotor positions or 
velocities along the perpendicular axis, was shown to have the 
opposite effect on the forward and backward whirl dynamics. 
These cross-axis gains, therefore, can be used to control 
differentially the forward and backward whirl dynamics. The 
parallel gains, in contrast, have the same effect on the forward 
and backward whirl dynamics. 

The use of output-feedback compensators, both MBC's and 
simple lead-lag compensators, was extensively studied for the 
translational model. The various compensator designs were 
compared on the basis of nominal stability, stability robustness 
to speed variation, and stability robustness to variations in the 
spoke characteristics. For both model-based and lead-lag 
compensators, designs with cross-over frequencies near the 
flexible mode frequency generally have the best performance. In 
particular, the low- and high-bandwidth designs exhibited poor 
stability and stability robustness. In fact, the open-loop, RHP 
poles and transmission zeros exhibited by the translational model 
place minimum and maximum bandwidth constraints on stabilizing 
controllers as can be seen by the maximum and minimum constraints 
of figure 37. 

Similar controllers were investigated for the angular 
model. Fixed-gain linear quadratic controllers, either 
full-state feedback LQR's or output feedback MBC's were found to 
have only limited stable speed ranges. This is caused by the 
extensive use of cross-axis feedback in these controllers. In 
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contrast, lead-lag compensators acting only on the parallel 
feedback paths stabilize the system at all rotational speeds. 

For both models, simple lead-lag compensators acting on 
parallel measurements provide good stability and stability 
robustness over a wide speed range. For the translational model, 
the gain of the compensator and frequencies of the compensator 
pole and zero are constrained by stability requirements, as 
mentioned above. For the angular model, the compensator must 
provide lead over a large enough frequency range to allow for the 
variation in cross-over frequency that occurs because of 
gyroscopic effects. 
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APPENDIX A 

CARES MODEL DEVEIBPMEWT 

This appendix develops an analytical model of the 
translational and angular (tilt) dynamics of the laboratory ACCES 
system. The ACCES system will be modelled as two rigid body 
masses, the hub and the flywheel, connected by a damped elastic 
structure, the spoke structure. The bearing forces and torques 
acting on the flywheel are controlled by a dynamic system, the 
controller, having access to hub position and orientation 
information. The model developed in this chapter will be used 
for the analysis and design of the controller system. 

A . l  Model DeveloDment 

The development of rotor dynamic models is an area of 
extensive previous research. Recent books by [Rao 19831 and 
[Diamarogonas 19831 as well as earlier works by [Tondl 19651, 
[Gunter 19661, and [Loewy 19691 provide various derivations and 
models. With the abundance of rotor dynamic models available, 
the development in this thesis of another model may seem 
unnecessary. Indeed, many models of actively controlled rotor 
systems are conventional rotor dynamic models with more general 
bearing forces used in place of the conventional bearing models. 
The emphasis of the development in this thesis, however, is 
modelling, in a form suitable for controller analysis and design, 
the unique features of activelv controlled rotor systems. The 
most important of these features is that the measurements of 
rotor position and orientation need not be colocated with 
actuation. Restated, the bearings (actuators) and measurement 
system (sensors) are not necessarily interacting with the same 
part of the rotor. In conventionally supported rotors, in 
contrast, the force produced at each bearing is a function of the 
time history of the position of the rotor at that bearing. 

The development used here will start by obtaining the 
relations between applied force and torque and the resulting 
position and orientation of each rigid body mass. Small angular 
motions will be assumed, leading to linearized models. The force 
and torque produced by the spoke structure will then be related 
to the relative positions and orientations of the rigid bodies. 
These relations describing the spoke structure will also be 
assumed linear. The bearing force and torque and measurement 
system descriptions will then be added to complete the system 
model. 

The approach just described will be used to develop a non- 
synchronous model, one that assumes perfect inertial and spoke 
geometries, analogous to a perfectly balanced conventional rotor 
system. A similar model that incorporates synchronous effects 
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can be found in [Johnson 19871. This synchronous model adds the 
effects caused by non-alignment of elastic and inertial centers 
at each rigid body mass. This is analogous to a conventional 
rotordynamic model that includes the effect of mass unbalances. 

Coordinate Systems 

Three coordinate system will be employed to provide a 
sufficient frame work for the development of the CARES dynamics. 
The first is an fixed, inertial coordinate system given by the 
(X,Y,S) axes with unit vectors (i, 1, k). This coordinate system 
is important for two reasons. The first reason is that the 
equations of motion, Newton's First Law and the Law of the Moment 
of Momentum, require time derivatives to be taken with respect to 
an inertial coordinate system. The second reason is that the 

this coordinate system, meaning that the forces and torques 
applied by the magnetic bearing and positions and rotations 
measured by the measurement system are most naturally expressed 

I magnetic bearing and measurement system are assumed stationary in 

I in this frame. 

A second type of coordinate system will be used to describe 
the position and orientation of the spin axis of each rigid 
body. These coordinate systems, called rotating coordinate 
systems, are attached to the rigid bodies but not spinning with 
them. Consider the coordinate system describing the position and 
orientation of one of the rigid body masses, as shown in figure 
A . l . l .  This reference system is iven by the (X(r) Y(r),S(r)) 
axes with unit vectors (i(r), i(rg, Ir(')). The S(rj-axis of this 
coordinate system is a principal axis of inertia of the rigid 
body and the origin of the coordinate system is coincident with 
the center of mass of the rigid body. 
called the axial inertial axis of the rigid body. 

The S(') axis will be 

Relative to this rotating coordinate system, the rigid body 
will have angular velocity ns&(r). In other words, seen from the 
rotating coordinate system, the rigid body spins about the 
S (r) -axis with rotational speed Ds. This rotating coordinate 
system will have the useful property that the moments of inertia 
of the rigid body are not functions of time when they are 
expressed in this coordinate system. 

The rotating coordinate system (X(r) ,Y(r) is related 
to the fixed coordinate system (X,Y,S) by the following rotations 
and translations. The fixed (X,Y,S) coordinate system is rotated 
by the angle 0 about the X axis to a new location given by the 
coordinate system (xtt,ytl,stt). This system can be rotated to a 
coordinate system (x',y,'s') that is parallel to the rotating 
system (X(r),Y(r),S(r)) by a rotation of 19 about the ytt axis. 
These rotations are shown in figures A.1.2a and A.1.2b. This 
intermediate (x',y:,s') coordinate system can be transformed into 
the rotating coordinate system (X(r) ,Y(r) by a translation 
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coord ina te  system. 

Figure A . l . l .  Rotating Coordinate System 
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Figure A . 1 . 2 .  Relation of Rotating Coordinate System to 
Fixed Coordinate System: Relative Angular 
Orientation 
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of the origin to a point (x,y,z) in the fixed (X-Y-S plane, as 
shown in Figure A.1.3. Note that while the rotating, or 
principal-axis-aligned, coordinate system does not spin with the 
rigid-body, the coordinate system will still rotate if either 
angles or 8 change with time. 

The third coordinate system is spinning about the S-axis of 
the fixed coordinate system with an angular velocity D, the 
nominal axial spin of the rigid bodies. This spinning coordinate 
system is given by the (X(s),Y(s),Z) axes with unit vectors 
(i , j , k) . The spinning coordinate system is related to the 
inertial coordinate system by a rotation of Dt about the S-axis, 
as can be seen in figure A.1.4. This will prove to be a useful 
coordinate system for describing the torques and forces produced 
by the spoke structure. Relative to this coordinate system, the 
spoke structure will appear stationary if the system is spinning 
at .equilibrium. 

Riaid-Body Motion 

The motion of the rigid bodies is governed by Newton's First 
Law for translational motion and the law of moment of momentum 
for rotational motion. These are 

and 

(A. 1.1) 

(A.1.2) 

where 

No = applied torque measured in the fixed reference system. 

d -- = time derivative in the fixed reference system 
dt 

Ho = absolute (referenced to the fixed system) angular 
momentum of the rigid body with respect to the center 
of mass o 

E = applied force measured in the fixed reference system. 
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Figure A.1.3. Relation of Rotating Coordinate System to 
Fixed Coordinate System: Relative Angular 
and Translational Orientation 
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Figure A . 1 . 4 .  Spinning Coordinate System 
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ei a1 

m = rigid-body mass 
yo = center of mass velocity relative to the fixed reference 

system. 

The right hand side of Equation A . l . l  can be most easily 
iated by taking the time derivative relative to the rotating 

reference frame, where the moments of inertia are not functions 
of time, and relating these time derivatives with respect to the 
rotating frame to the time derivatives with respect to the 
inertial frame by 

(A.1 .3)  

where 

time derivatives are taken with respect to the coordinate 
system indicated by the superscript 

- c is any vector 

- I) = angular velocity of the rotating frame as seen from the 
inertial frame 

- n x c indicates the vector cross product. 

The following assumptions will be used, allowing the applied 
forces and torques to be related to the resultant positions of 
the two rigid bodies by linear equations. 

1 )  The flywheel and hub are assumed to behave as 
rigid-bodies. 

2 )  The rigid bodies have an axis of symmetry, which is the 
nominal spin-axis. 

3 )  The angular momentum of the rigid bodies along the 
s (r) -axis is constant. 

4) The Bryant angles 4 and 19 are small. 

These are the usual assumptions of rotordynamics, discussed in 
more detail in [Tondl 1965;  Gunter 1966;  Rao 1983;  and 
Diamarogonas 19831  among others. With these assumptions rigid 
body positions are related to applied forces and torques by 
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(A.1.4) 

where 

the applied torques Mx and MY, the applied forces Fx and Fy, 
the Bryant angles 4 and 8, and the positions x and y are 
functions of time expressed relative to the fixed, inertial 
frame, 

( ) indicates differentiation with respect to time in the 
fixed, inertial frame, and 

. 

Irr and I,, are the (constant) principal moments of inertia 
with respect to the center of mass. 

Note that a set of these equations is necessary for each rigid 
body mass. The first two of Equations A.1.4 are the ttgyro 
equationstt used for analyzing gyroscopic instruments [Crandall 
1968 3 .  

Spoke Structure Forces and Torcrues 

The applied forces and torques are developed by two 
mechanisms, the interconnecting spoke structure and the magnetic 
bearing. Consider the spoke structure first. As noted earlier, 
the spokes are modelled as a linear, damped elastic structure. 
The force and torque generated by the spoke structure are, 
therefore, linearly related to the relative translational and 
angular displacements and velocities seen across the spoke 
structure. These relative translational and angular 
displacements are given by the relative orientation and position 
of ttelastic axestt. There are elastic axes fixed in each rigid 
body and are denoted as the Ithub elastic axestt and the ttflywheel 
elastic axestt. The origins of these elastic axes are the points 
in the rigid bodies through which the force generated by the 
spoke structure acts. These origins will be called the elastic 
centers or spoke centers of force. When the origins of the hub 
and flywheel elastic axes coincide, which is the zero force 
equilibrium configuration, no elastic force is produced by the 
spoke structure. At this zero force equilibrium position, the 
two elastic axes systems are defined to be coincident with the 
principal elastic axes of the spoke structure. 

These elastic axes are fixed in each rigid body but do not, 
in general, coincide with the principal inertial axes of the 
rigid bodies. For the non-synchronous model under development in 
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this section, however, the elastic and inertial axes are assumed 
to coincide. This is analogous to assuming a perfectly balanced 
rotor in conventional rotor dynamic models. 

In the ( X ( s )  , Y ( s )  ,S(s)) axes system, which spins with the 
spoke system, the following linear- relation between the relative 
displacements of the two rigid bodies and the forces and torques 
produced by the spoke structure is therefore assumed 

(SI d 
Es = - k s  - Ct -- (Az) 

dt 
( A . 1 . 5 )  

( A . 1 . 6 )  

where 

Es = radial force acting on the flywheel mass due to the 
spoke structure 

kt = translational (radial) spring constant of the spoke 
structure 

- Ar = (xf - Xh)i + (yf - yh)i, the position of the flywheel 
center of mass relative to the hub center of mass 

cr = radial damping constant of the spoke structure 

Ts = radial torque acting on the flywheel due to the spoke 
structure 

ka = radial, torsional spring constant of the spoke 
structure 

Ca = radial, torsional damping constant of the spoke 
structure and 

S superscript indicates differentiation with respect to 

The above relations are based either implicitly or 

1) The spoke structure is modelled as a linear, elastic 

the spinning reference frame. 

explicitly on the following assumptions: 

structure with linear damping. 
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2 )  The nominal spin axis of the hub and flywheel is a axis 
of symmetry for the spoke structure. The spoke structure, 
therefore, is assumed to have rotationally anisotropic 
translational and angular stiffnesses. This implies that there 
is no torque-radial displacement or force-angular displacement 
coupling and that the general tensor relation between generalized 
displacements and generalized forces reduces to scalar relations 
[Foley 19861. 

3) The force generated by the spoke structure acts through 
the centers of mass of the two rigid bodies. 

4) The spokes are massless. 

Equations A . 1 . 5  and A.1.6 give the force and torque generated by 
the spoke structure that act on the flywheel. The spoke 
stqucture generates an equal and opposite force and torque that 
act on the hub, of course. A derivation of the spoke structure 
force and torque equations and more detailed discussion of these 
assumptions are contained in thesis by [Foley 19861. 

Again, Equation A . 1 . 3  can be used to transform the time 
derivatives with respect to the spinning reference frame, as 
required in force and torque equations above, into time 
derivatives with respect to the fixed, inertial reference frame. 
This gives the spoke force and torque equations as 

( A . 1 . 7 )  

(A.1.8) 

where 

n = ilk, the angular velocity of the spinning frame as seen 
from the inertial frame 

i superscript indicates differentiation with respect to the 
inertial frame. 

Expressed in the inertial coordinate system, the scalar 
components of the force and torque generated by the spoke system 
are now given by 
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I where the f and h 

(A.1.9) 

subscripts denote flywheel and hub 
respectively. The important coupling effect of the internal 
damping can now be seen. For example, the spoke force in the 
x-direction is now a function of the y-direction displacements 
and the rotational speed n. 

Lorentz Bearinq 

The Lorentz bearing is assumed to act as an ideal, linear 
actuator with currents as inputs and forces and torques acting on 

I the hub as outputs. With these assumptions, the bearing forces 
can be written as 

(A.l.10) 

where 

Fx, FYI M,, and My now denote the bearing forces and torques 

ix, iy, id, and id are the currents driving the Lorentz 

klt = Lorentz bearing translational force/input current 

kla - - Lorentz bearing angular torque/input current 

bearing 

proportionality constant 

proportionality constant. 

I At this point in the development, the forces generated by the 
Lorentz bearing are assumed to act through the hub center of 
mass. 
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A.2 Emations of Motion: Non-svnchronous Model 

The equations for the spoke forces and torques (Equations 
A.1.9) can be combined together with the bearing forces and 
torques (Equations A.l.lO) and the force-torque/position-tilt 
relations (Equation A.1.4) to give the equations of motion as 

where 

F,, FYI fix, My now refer to the forces and torques produced 
by the magnetic bearing 

Ifr, Ifz, Ihr, and Ihz are the radial (subscript r) and 
axial (subscript z) moments of inertia of the flywheel (subscript 
f) and -hub (subscript h) . 

The model of the CARES system described by Equations 
A.2.1 is analogous to a conventional flexible rotor model that 
assumes the rotor masses are perfectly balanced and an 
axisymmetric shaft with linear stiffness and damping. Because of 
the lack of %nbalanceIl disturbances, this model is unsuitable 
for analysis of the synchronous response of the CARES system. 
The model is, however, appropriate for the analysis of 
non-synchronous performance including, most importantly, the 
stability of the rotor/bearing system. 

- 

A.2.1 Translational Dvnamics: Non-svnchronous Model 

Note that these equations of motion separate into two 
uncoupled models, one for the translational dynamics and one for 
the angular or tilt dynamics. For the translational dynamics, 
the equations of motion are given by 
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z =  x + jy 

and the complex bearing force 

Using this complex notation 
motion are given by 

(j = V$ (A. 2.3) 

FX + j F y  (A. 2 . 4 )  

the translational equations Of 

. -  
0 

FC - -  

Multiplying through by the inverse of the inertia matrix gives 

.. 
- z + C& + (Kt - jnCt)z = Fc (A. 2.6) 

where the vector z is comprised of the complex flywheel and hub 

positions 

the normalized radial damping matrix C t  and radial stiffness 
matrix Kt are 
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(A. 2 . 8 )  

and Ec is a vector of normalized, complex bearing control forces 

Put into state-space form, with complex state variables, 
these equations of motion are 

I 6 - I - .  - 
0 

(A. 2.10) 

Using the complex notation, this is a four state system with 
state vector [zf, Zh, if, &IT controlled by the complex force 
FC 

Expanding back into real notation and substituting the 
Lorentz bearing force/current relation gives the following 
state-space form 

87 



0 0 I 
- 

"f 

Kh 

kf 

ih 

0 0 0 

+ 
I 

0 0 I t o  

0 0 0 

0 0 0 

0 0 I 

0 0 0 

I 

$h 1 

i 

- 
0 0 

0 0 

0 0 

kl t 
0 --- 

mh 

0 0 

0 0 

0 0 

. - J  L- - 
(A. 2.11) 

I Using this real notation, the system has eight states and is 
controlled by the currents ix and iy that produce the 
translational forces Fx and Fy. This can be represented in 
standard form by 

- x = % +  Bu (A. 2.12) 

where 

- x = 

U - - [ix, iyIT, the Lorentz bearing translational 
curreGts. 

[xf, xh, kf, iih, yf, yh, +f, GhlT, the state vector 

Note that the state dynamics matrix A and control 
effectivness matrix EL can be partitioned as 
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= 6 -3 (A. 2.13) 

Matrices that can be partitioned as above will be called 
88block-symmetric18 in this thesis. Block-symmetric matrices have 
the property that the diagonal partitions (Ar and Br in Equation 
A.2.13) are identical and the off-diagonal partitions (Ai and Bi 
in Equation A.2.13) are identical but of opposite signs. The 
fact that the CARES dynamics are described by block-symmetric 
matrices allows the use of complex notation. The relation 
between systems described by these block-symmetric matrices and 
the use of complex notation is explored more fully in Chapter 4 
of '[Johnson 19871. 

A.2.2 Ansular Dynamics: Non-svnchronous Model 

The angular or tilt dynamics have a similar form to the 
translational dynamics but with the addition of gyroscopic 
terms. Referring to Equations A.2.1, the angular dynamics are 
given by 

Again, the notation can be simplified by introducing the complex 
angular displacement 

$ = # + j e  (A. 2.15) 

and the complex bearing torque 

M, = M, + jMy (A. 2.16) 

Using this complex notation and dividing through by the moments 
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of inertia, the angular dynamics are given by 

where the vector & is comprised of the flywheel and hub angular 
displacements as 

the vector Mc contains the normalized, complex bearing torques as 

and the normalized angular damping matrix Ca, gyroscopic matrix 
G ,  and angular stiffness matrix Ka are given by 

Ihr Ihr Ihr 

(A. 2 . 2 0 )  

Put into state-space form, with complex state variables, 
these equations of motion for the angular dynamics are 

Using the complex notation,. this is a four state system with 
state vector 1 $f, $h, $f, $h]T controlled by the complex 
bearing torque Mc. 

Expanding back into real notation gives the following real 
state-space form 

90 c -2- 



- i f 1  

I 
ih I 

0 0 

k la  

I h r  
0 --- 

0 0 

0 0 

0 0 

k l t  0 --- 
. Ihr- 

0f 

.. 
~ dh 

, if ( 0 0 0 0 

0 0 0 0 
, .  

i h  

e'f 

+ 
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APPENDIX B. CONTROLLER DESIGN GOALS AND METHODS 

This appendix discusses the various controller designs that 
were investigated. Section B.l introduces the full-state 
feedback compensators that were investigated. Section B.2 
discusses the corresponding output-feedback compensators that 
will be investigated. 

B . l  Full-State Feedback: Linear Quadratic Recrulators 

The full-state feedback controllers that were investigated 
are the well known deterministic, linear-quadratic regulators. 
The LQR was examined both to understand achievable performance of 
a full-state feedback controller and as an indication of the 
closed-loop performance of the output-feedback, model-based 
compensator designed using linear quadratic Gaussian synthesis 
with loop transfer recovery. These model-based compensators will 
be discussed in the next section. In this section we consider 
the  linear quadratic regulator as an full-state feedback 
controller. 

The linear quadratic regulator has been extensively studied 
both because of its time optimal characteristics and its good 
frequency domain attributes [Kwakernaak, 19721. The linear 
quadratic regulator is the optimal set of full-state feedback 
gains which will bring any initial state of the system to 
equilibrium, while minimizing the cost 

(B.l.1) 

0 

subject to the dynamic constraint imposed by the system state 
equations. In the time-optimal interpretation, the matrices Q 
and R express the relative costs assigned to deviations of the 
state from equilibrium and control effort. In this research, 
however, these will be considered as free design parameters used 
to achieve desirable frequency domain shapes of the loop transfer 
function matrix. 

If the terminal time of the problem is made infinite (tl - 
a), the optimal controller consists of the time-independent gains 
K(nd) relating system state to control input as 

where the feedback gain matrix K(Q) is given by 

(B.1.2) 

(B.1.3) 
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and S is the unique positive definite solution matrix1 of the 
algebraic Riccati equation 

Note that the feedback gains K(Qd) are a function of the design 
rotational speed (nd) because the system dynamics matrix A(nd) 
used in the algebraic Riccati equation is a function of 
rotational speed. 

The closed-loop system controlled by the LQR is shown in 
figure B.l.l. The inputs are the command reference, shown set 
equal to zero, and the two synchronous disturbances, both 
functions of the rotational speed n. The full state of the 
system is fed back to the input through the LQR gains K. Note 
that the closed-loop system is a function of both the design 
rotational speed nd, through the LQR gains K(nd), and the actual 
rotational speed n, through the disturbances and the system 
dynamics matrix A(n). 

In this research, the state weighting matrix Q is always set 
equal to CCT, meaning that only the plant output will be 
weighted. For the translational model, then, only the hub 
position is weighted and for the angular model hub orientation is 
weighted. The control weighting matrix R always had the form 

R = p I  (B.1.5) 

where p is a scalar that determines the cross-over frequency of 
the loop transfer function 

This open-loop transfer function, the so called I I L Q  can be 
found in figure B.l.l when the loop is broken at the point marked 
1. The Q and R matrices are chosen such that the LQ loop has 
desirable frequency domain characteristics. This design 
methodology is similar to SISO design technique of achieving 
desirable system performance through shaping of the open-loop 
bode magnitude plots. The measure used for these MIMO systems, 
however, will be the maximum and minimum singular values of the 
LQ loop. 

' See Kwakernaak [ 1972, ~ 2 3 8 1  for sufficient conditions4 
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Figure B . l . l .  Linear Quadratic Regulator Loop Configuration 
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If the actual rotational speed Q is equal to the design 
rotational speed nd and the control weighting matrix R is 
diagonal, which it always was for the designs used in this 
research, the LQ loop possesses the following desirable stability 
robustness properties. The simultaneous and independent 
stability margins in all feedback paths are: 

1) Upward gain margin is infinite 

2) Downward gain margin is at least 6db 

3) Phase margins are at least k 60" 

Again, these good stability margins are only guaranteed when the 
design and rotational speeds are the same. 

Another property of the LQ loop that was used extensively is 
the @@root square locus11. Given the design choices made for Q and 
R and assuming a fixed design rotational speed nd equal to the 
actual rotational speed n, the closed-loop pole locations are 
only a function of the design parameter p (Equation B.1.5). The 
root-square locus method can be used to find the locations of 
these closed-loop poles as p varies [Kwakernaak 1972, ~2811. If 
the design parameter p approaches infinity, the so called 
"expensive control" problem, the closed-loop poles of the LQR 
approach the open-loop poles of the plant transfer function1 

= C(SI - ~ 1 - 1 ~  (B.1.7) 

if an open-loop pole lies in the LHP. If the open-loop pole lies 
in the RHP, the closed-loop pole approaches the LHP image of the 
open-loop pole. If the design parameter p approaches zero, the 
so called "cheap control" problem, some of the closed-loop poles 
of the LQR approach the open-loop zeros of Gp(s). The remainder 
of the closed-loop poles go to infinite along the stable branches 
of multiple Butterworth patterns. 

During this research, results were developed for the LQR in 
both fixed- and variable-gain configurations. In the variable 
gain configuration, the design rotational speed nd is kept equal 
to the actual rotational speed n. This results in a variable 
gain controller K ( n ) .  The closed-loop performance of the system 
with the variable-gain configuration is a function of the two 
design parameters R and Q and the rotational speed n. In the 
fixed-gain configuration, the feedback gain matrix K is fixed 
based on the design parameters R, Q, and the design rotational 
speed nd. The plant, of course, still changes with changing 
rotational speed. The closed-loop performance of the system with 

Because of the design choose setting Q = CCT. 

95 



the fixed-gain LQR is a function of the two design parameters R 
and Q, the design rotational speed nd, and the actual rotational 
speed n. These variable- and fixed-gain linear quadratic 
regulators were investigated for a variety of design parameters 
and rotational speeds. 

B.2 Output Feedback: Model Based Compensators 

Although the performance of full-state feedback controllers 
was investigated, the main thrust of the controller development 
was aimed at output feedback compensators based on measurement of 
hub position and orientation. This section discusses a specific 
class of compensators, the model based compensators (MBC) 
designed using linear quadratic Gaussian synthesis with loop 
transfer recovery (LQG/LTR) that will be extensively examined in 
the following chapters. 

The MBC designed using the LQG/LTR procedure consists of a 
Kalman filter combined with a linear quadratic regulator. The 
Kalman filter is used as a full-state observer to estimate the 
state of the system. This estimated state is used by the LQR to 
produce the controller output. This configuration is shown in 
figure B . 2 . 1 .  The transfer function of the model based 
compensator is given by KaF(s) and of the plant by %(s). The 
system output X ( s )  is copprised of the plant output corrupted by 
the spoke disturbance Di(s). The compensator has as its input 
the system output corrupted by the measurement error po(s). 

The internal structure of the model based compensator and 
plant are shown in figure B . 2 . 2 .  As can be seen in this figure, 
the compensator structure mimics the plant structure, hence the 
name "model based compensator.Il The A(nd), B, and C matrices of 
the compensator are all determined by the plant model and the 
choice of design rotational speed nd. The matrix K(nd) comes 
from the solution to the LQR problem, as discussed in section 
B . 2 .  This feedback matrix is a function of the design parameters 
R and Q as well as the design rotational speed nd. The Kalman 
filter matrix H(nd) formally comes from the solution of the 
steady state Kalman filter problem, which will be discussed 
below. Using the loop transfer recovery method, this matrix will 
be determined by the plant model, which is a function of the 
design rotational speed nd, and a free design parameter . 

The LQG/LTR methodology attempts to design the Kalman filter 
gain matrix H(nd) such that the good frequency domain shape and 
stability robustness of the full-state feedback LQ loop is 
recovered in an output feedback compensator. In order to achieve 
this goal, the Kalman filter design is used in a very specific 
way, the so called "accurate measurement" Kalman filter problem. 
Consider the stochastic, linear, time-invariant system 
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Figure B . 2 . 1 .  Model Based Compensator Loop Configuration 

97 



a) Model based compensator Km&) 

b) Plant 

Figure B . 2 . 2 .  B l o c k  Diagram of Model Based Compensator 
and Plant 
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( B . 2 . 1 )  

( B . 2 . 2 )  

where the process noise g(t) is assumed white with zero-mean as 

E[o(~)w~(t)] = BBT6(t - T )  ( B . 2 . 3 )  

and the measurement noise y(t) is assumed white with zero-mean 
and unit intensity indexed by the design parameter as 

E[X(r)YT(t)] = pI6(t - T )  ( B . 2 . 4 )  

Under the assumption that [A, B] is stabilizable and [A, C] 
detectable, the Kalman filter gain matrix H is given by 

(B.2.5) 

where the error covariance matrix is the solution to the 
algebraic Ricatti equation 

1 

Ir 
AI= + XAT + BBT - ---xcTa = o 

( B . 2 . 6 )  

If Gp(s) is has no non-minimum phase transmission zeros, the 
loop transfer function of the MBC approaches the loop transfer 
function of the LQR as the design parameter p + 0. More 
specifically, for the MBC of Figure B . 2 . 1 ,  if 

1 )  the design rotational speed nd is equal to the actual 

2 )  the plant transfer function Gp(s) = C(s1 - A ) - l B  has no 

rotational speed and 

non-minimum phase transmission zeros, 

then the loop transfer function of figure B . 2 . 1  broken at point 
1, which is given by 

K ~ ~ ( s ) G ~ ( s )  = K(SI - A + BK + HC)-~HC(SI - ~ 1 - 1 ~ ~  

( B . 2 . 7 )  
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I 

converges, pointwise in s, to the LQ loop transfer function 

LQ loop are reflected in the MBC loop transfer function matrix 
broken at either the plant input or output. 

The use of model based compensators in conjunction with 

Glq(s) = K(sI - A)”B (B.2.8) 

This, then, is the important result. By the use of the 
accurate measurement Kalman filter, the good loop shape and 
stability robustness of the full-state feedback, linear quadratic 
loop can be recoveredl in a output-feedback compensator [Doyle 
19811 In practice, the design parameter p will be used to 
control the frequency range over which the LQ loop is recovered. 

I This important loop recovery result, however, is contingent 
on the two premises, which will not always be satisfied. Since 
the goal is to design fixed-gain compensators, obviously the 
design rotational speed will not always match the actual 
rotational speed, which is assumed to vary. This will, of 
course, be true for both the translational and angular model. 
Also, the translational model exhibits non-minimum phase 
transmission zeros at super-flexible speeds, which also violates 
the necessary conditions for loop recovery. In these cases, good 
stability robustness and disturbance is not guaranteed. As was 
shown during this research [Johnson 19871, however, the MBC will 
retain good stability properties in many of the super-flexible 

I cases2. 

With the LQG/LTR approach and the design choices already 
discussed, three design parameters will specify the MBC. These 
parameters are: 

1) The linear quadratic regulator parameter p which 
controls the bandwidth of the LQ loop. 
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2) The Kalman filter parameter p which controls the 
bandwidth of the loop recovery. 

3) The design rotational speed nd, which effects both the 
compensator through both the LQ gain matrix K(nd) and the Kalman 
filter matrix H(nd). 

The closed-loop system, of course, is a function of these three 
design parameters and the actual rotational speed. The 
closed-loop performance of the translational and angular models 
controlled by MBC's for variety of design parameters p ,  p ,  and nd 
and with varying rotational speed n were investigated during this 
research. Besides these model based compensators,' more 
conventional output-feedback controllers using lead-lag 
compensators were also investigated. 
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